Как сделать солнечную батарею своими руками: инструктаж по самостоятельной сборке

Материалы для создания солнечной пластины

  • Солнечные диоды — основные строительные блоки солнечной батареи;
  • Специальные провода для подключения диодов;
  • Уплотнительные материалы для обеспечения водонепроницаемости;
  • Различные инструменты — паяльник, пинцет, ножницы, кусачки;
  • Разъемы и контакты для подключения солнечной пластины к другим устройствам.

Важно правильно выбрать типы материалов и инструментов, чтобы обеспечить правильную сборку и работу солнечной пластины. Секреты успешной работы солнечной пластины своими руками заключаются в выборе качественных материалов и умелой подготовке

При выборе солнечных диодов для создания солнечной пластины, необходимо обратить внимание на их эффективность и мощность. Существуют различные типы солнечных диодов, вариант выбора зависит от индивидуальных потребностей и условий эксплуатации

Подготовка материалов и инструментов перед работой над созданием солнечной пластины — важный этап в процессе ее изготовления. Подберите правильные инструменты для устройства и сборки солнечных панелей. Обязательно использование уплотнительных материалов для обеспечения надежной защиты от воды.

Таким образом, для успешного создания солнечной пластины своими руками необходимо выбрать качественные материалы и правильные инструменты, а также правильно подготовить их для работы. Это поможет обеспечить правильную сборку и устройство солнечной пластины, которая будет эффективно использовать солнечную энергию для питания других устройств.

Как собрать солнечную батарею своими руками (пошаговая инструкция)

Солнечные коллекторы являются одним из наиболее перспективных способов выработки электроэнергии. Для покупки такого устройства необходимо потратить достаточно денег. Однако можно и дешевле построить солнечные батареи своими руками.

Солнечные панели — это пары солнечных элементов, которые преобразуют световую энергию в электричество. Солнечные батареи работают за счет использования фотоэлектрического барьера.

Принцип работы полупроводникового фотоэлемента

Он генерирует электрическое поле на вкладе полупроводников различных типов проводимости (P и N). Это препятствует проникновению электронов с проводимости типа P типа n и препятствует проникновению дырок с проводимости типа P типа в проводимость типа n.. Когда такие кристаллы освещаются, элементарные частицы света — фотоны — удаляют электроны со своих орбит и создают электронные пары.

В этом случае электроны, созданные в слое P вблизи контакта P-N, перемещаются в слой N под действием электрического поля в плотине. Аналогично, «дыры», созданные светом в области n, переносятся в потенциальную зону p. В результате эта область заряжена отрицательно из-за наличия избыточных электронов в слое n. Аналогично, в слое p имеются избыточные отверстия и положительная нагрузка. Контакт пластин создает разность потенциалов. Отрицательные тенденции влияют на контакты, связанные с N-полупроводниками, в то время как положительные тенденции влияют на другие выводы.

Из чего состоит

Материалы, используемые в конструкции солнечных батарей, включают

  • кремний ( Si );
  • германий ( Ge );
  • арсенид галлия ( GaAs );
  • селен ( Se );
  • теллурид кадмия ( CdTe ) .

Солнечные батареи на основе кремния являются наиболее распространенными. Они характеризуются отличной производительностью и относительно низкой стоимостью.

Источники солнечной энергии можно разделить на три типа: монокристаллические, поликристаллические и аморфные.

  1. Монокристаллические элементы сделаны из одного цельного кристалла кремния. Эти элементы изготавливают, разрезая искусственно выращенные кристаллы кремния. Их КПД находится в пределах от 13 до 25%. Они могут работать в течение 25 лет, однако, их коэффициент полезного действия со временем уменьшается. Такие элементы теряют свою эффективность при слабом освещении.
  2. Поликристаллические фотоэлементы изготавливают, расплавляя, а потом охлаждая кристалл кремния. КПД таких приборов находится в пределах от 9 до 18%. Срок их службы 10 лет, но при этом коэффициент полезного действия не уменьшается с течением времени. Эти модули могут работать даже в плохую погоду.
  3. Солнечные элементы на основе аморфного кремния изготавливают путем напыления полупроводника на основание из полимера. Такие элементы способны гнуться, поэтому их легко монтировать. Однако КПД у них небольшой – от 5 до 10%, а срок службы не более 2-х лет. Неплохо работают при слабом освещении.

Преимущества и недостатки этого вида энергии

В каждой из отраслей энергетики есть сильные и слабые стороны. Плюсы получения электричества из солнечного света:

  • Не используются ископаемые, жидкие и газообразные виды топлива.
  • Отсутствуют факторы загрязнения окружающей среды.
  • Солнечный свет – бесплатный источник энергии.

Но и без минусов не обошлось:

  • Стоимость батарей хоть и снижается, но все равно находится на высоком уровне.
  • Кроме панелей, нужны аккумуляторы и преобразователи.
  • Срок окупаемости от 5 лет.

Не забудьте учесть ресурс работы аккумуляторов и их периодическую замену. Солнечная энергия не настолько дешевая, как об этом часто утверждают. Однако если нет других вариантов – это подходящий способ электрификации.

Больше всего распространены поликристаллические и монокристаллические панели. Последние дороже, поскольку изготавливаются из однородных кристаллов кремния, больший КПД (около 15%). Поликристаллы производятся из вторсырья, остатков от изготовления монокристаллов и продуктов переработки панелей. Стоят примерно на 15% дешевле, имеют КПД чуть ниже (8–12%), при этом разные источники сходятся во мнении, что они показывают лучшие результаты в пасмурную или облачную погоду поэтому разница в цене не всегда оправдана. Аморфные батареи встречаются редко.

Как отличить поликристаллическую от монокристаллической солнечной панели?

Очень просто, у элементов монокристаллической структуры углы скруглены или сегментные, а цвет ее поверхности однородный: от темно-синего до черного. Поликристаллические элементы имеют форму правильных прямоугольников, а их цвет неоднородный, слегка переливающийся: от синего до почти черного, его текстура отдаленно напоминает камуфляж.

Конструктивные особенности

В приэкваториальных районах Земли средний поток солнечной энергии составляет в среднем 1,9 кВт/м2. В средней полосе России он находится в пределах 0,7~1,0 кВт/м2. КПД классического кремниевого фотоэлемента не превышает 13%.

Как показывают опытные данные, если прямоугольную пластину направить своей плоскостью на юг, в точку солнечного максимума, то за 12‑часовой солнечный день она получит не более 42% суммарного светового потока из‑за изменения угла его падения.

Это означает, что при среднем солнечном потоке 1 кВт/м2, 13% КПД батареи и её суммарной эффективности 42% удастся получить за 12 часов не более 1000 x 12 x 0,13 x 0,42 = 622,2 Втч, или 0,6 кВтч за день с 1 м2. Это при условии полного солнечного дня, в облачную погоду — значительно меньше, а в зимние месяцы эту величину нужно разделить ещё на 3.

Учитывая потери на преобразование напряжения, схему автоматики, обеспечивающую оптимальный зарядный ток аккумуляторов и предохраняющую их от перезаряда, и прочие элементы можно принять за основу цифру 0,5 кВтч/м2. Этой энергией можно в течение 12 часов поддерживать ток заряда аккумулятора 3 А при напряжении 13,8 В.

То есть для заряда полностью разряженной автомобильной батареи ёмкостью 60 Ач потребуется солнечная панель в 2 м2, а для 50 Ач — примерно 1,5 м2.

Для того чтобы получить такую мощность можно приобрести готовые панели, выпускающиеся в диапазоне электрических мощностей 10~300 Вт. Например, одна 100 Вт панель за 12‑ти часовой световой день с учётом коэффициента 42% как раз обеспечит 0,5 кВтч.

Такая панель китайского производства из монокристаллического кремния с очень неплохими характеристиками стоит сейчас на рынке около 6400 р. Менее эффективная на открытом солнце, но имеющая лучшую отдачу в пасмурную погоду поликристаллическая — 5000 р.

При наличии определённых навыков в монтаже и пайке радиоэлектронной аппаратуры можно попробовать собрать подобную солнечную батарею и самому. При этом не стоит рассчитывать на очень большой выигрыш в цене, кроме того, готовые панели имеют заводское качество как самих элементов, так и их сборки.

Но продажа таких панелей организована далеко не везде, а их транспортировка требует очень жёстких условий и обойдётся достаточно дорого. Кроме того, при самостоятельном изготовлении появляется возможность, начав с малого, постепенно добавлять модули и наращивать выходную мощность.

Классификация фотоэлектрических модулей

Сегодня производство солнечных батарей идёт двумя параллельными путями. С одной стороны на рынке присутствуют фотоэлектрические модули, созданные на основе кремния, а с другой — плёночные, созданные с использованием редкоземельных элементов, современных полимеров и органических полупроводников.

Популярные сегодня кремниевые фотоэлементы подразделяются на несколько типов:

  • монокристаллические;
  • поликристаллические;
  • аморфные.

Для использования в самодельных солнечных батареях лучше всего использовать модули из поликристаллического кремния. Хоть КПД последних и ниже, чем у монокристаллических элементов, но зато на их работоспособность не так сильно влияет загрязнённость поверхности, низкая облачность или угол падения солнечных лучей.

Что же касается батарей из аморфного кремния, то они ещё менее зависимы от погодных условий и за счёт своей гибкости практически не подвержены риску повреждений при сборке. Тем не менее использование их в собственных целях ограничивается как достаточно низкой удельной мощностью на 1 квадратный метр поверхности, так и по причине высокой стоимости.

Кремниевые солнечные элементы представляют собой самый распространённый класс электрических фотопластин, поэтому они чаще всего используются для изготовления самодельных устройств

Появление плёночных фотоэлектрических модулей обусловлено как необходимостью в снижении стоимости солнечных батарей, так и потребностью получить более производительные и долговечные системы. Сегодня промышленность осваивает выпуск тонких гелиоэлектрических модулей на основе:

  • теллурида кадмия с КПД до 12% и стоимостью 1 Вт на 20–30% ниже, чем у монокристаллов;
  • селенида меди и индия — КПД 15–20%;
  • полимерных соединений — толщина до 100 нм, с КПД — до 6%.

О возможности использования плёночных модулей для постройки электрической солнечной станции своими руками говорить пока ещё рано. Несмотря на доступную стоимость, изготовлением теллуридо-кадмиевых, полимерных и меде-индиевых фотоэлементов занимаются лишь отдельные компании.

Такие достоинства плёночных фотоэлементов, как высокий КПД и механическая прочность позволяют с полной уверенностью говорить, что за ними — будущее солнечной энергетики

Хоть в продаже и можно найти батареи, созданные по плёночной технологии, в большинстве своём они представлены в виде готовых изделий. Нам же интересны отдельные модули, из которых можно построить недорогую самодельную солнечную панель — на рынке они пока ещё в дефиците.

Сводные данные по КПД солнечных элементов, которые выпускаются промышленностью, представлены в таблице.

Таблица: КПД современных солнечных батарей

Тип фотоэлементаКоэффициент полезного действия, %
Монокристаллический кремнийот 17 до 22
Поликристаллический кремнийот 12 до 18
Аморфный кремнийот 5 до 6
Теллуридо-кадмиевыеот 10 до 12
На основе селенида меди-индияот 15 до 20
Полимерныйот 5 до 6

Изготовление солнечной батареи из диодов своими руками

Солнечные батареи – это устройства, которые преобразуют солнечную энергию в электричество. Они широко применяются в различных областях, начиная от автономных источников питания до систем энергосбережения для домов и офисов. Если вы хотите изготовить солнечную батарею из диодов своими руками, следуйте изложенным ниже секретам и рекомендациям.

Первоначальный этап – подготовка необходимых материалов и инструментов. Для создания солнечной батареи вам понадобятся различные типы диодов, пластины изготовленные из разных материалов, соединительные провода и разъемы, а также инструменты для их сборки.

Какой тип диодов выбрать? Хорошим вариантом для солнечной батареи являются моноэлементные диоды, так как они имеют высокую эффективность в преобразовании солнечной энергии в электричество. Кроме того, стоит выбрать диоды с высоким коэффициентом эффективности и надежными характеристиками.

Не забывайте о выборе правильной схемы сборки солнечной батареи. Существует множество вариантов, и вам следует выбрать тот, который наиболее подходит для вашего устройства.

Изготовление солнечной батареи из диодов своими руками – это интересное и полезное занятие. Следуя перечню представленных секретов и рекомендаций, вы сможете создать эффективное устройство, способное преобразовывать солнечную энергию в электричество и использовать ее для различных задач.

Набор оборудования для солнечной станции

Мощная солнечная батарея для дачи – устройство не самодостаточное. Полученную энергию нужно где-то запасти, чтобы вечером и в пасмурную погоду полноценно пользоваться бытовыми электроприборами.

Поэтому емкий и живучий аккумулятор нам в любом случае потребуется. В его выборе есть один важный нюанс: не пытайтесь сэкономить, покупая стартовый автомобильный аккумулятор. Он плохо подходит для цикличного запасания энергии и не переносит глубокого разряда. Его главное предназначение – дать мощный, но кратковременный ток для пуска двигателя.

Для запасания и медленного расходования энергии нужны аккумуляторы другого типа: AGM или гелевые. Первые дешевле, но имеют небольшой срок службы (до 5 лет). Гелевые аккумуляторы дороже, но зато работают значительно дольше (8-10 лет).

Контроллер – еще один важный элемент автономной гелиостанции. Он выполняет несколько задач:

  • Отключает батарею от аккумулятора в момент полного заряда и включает ее для новой закачки электричества.
  • Выбирает оптимальный режим зарядки, повышая количество запасаемой энергии.
  • Обеспечивает максимальный срок службы аккумулятора.

Существует несколько типов контроллеров, используемых в солнечных станциях:

  • ON/OFF «включил-выключил»;
  • PWM;
  • MPPT.

Самый дешевый прибор просто отключает солнечную панель от аккумулятора при возрастании напряжения на его клеммах до максимального уровня. Это не лучший вариант, поскольку в этот момент аккумулятор еще не полностью заряжен.

Более дорогой PWM-контроллер действует «умнее». После набора максимального напряжения, он понижает его до заданного уровня и держит еще пару часов. Так достигается более полный уровень накопления энергии.

И наконец, самый интеллектуальный контроллер MPPT- типа максимально эффективно использует мощность солнечной панели на всех режимах ее работы. Это позволяет запасти в аккумуляторе дополнительно от 10 до 30 % электричества.

Независимо от вида используемых полупроводниковых материалов (поликристаллы, монокристалл, аморфный кремний) устройство солнечной батареи представляет собой цепочку последовательно соединенных ячеек-модулей. Каждый из них генерирует небольшое напряжение (в пределах 0,5 вольт) и слабый ток (десятые доли ампера). Работая вместе, они «сливают» накопленную энергию в общий канал и на выходе из батареи мы получаем ток большой силы и постоянного напряжения (12 или 24 Вольт).

Структурная схема оборудования солнечной станции

Стандартные бытовые электроприборы рассчитаны на 220 Вольт, поэтому работать от «постоянки» не будут. Преобразование постоянного тока в переменный выполняет отдельное устройство-инвертор. Им завершается цепочка оборудования, необходимого для солнечной батареи.

Несмотря на относительно высокую стартовую стоимость компонентов солнечной станции, ее эксплуатация получается выгодной благодаря большому ресурсу «жизни» главных элементов: фотокристаллической панели и аккумулятора.

Определение солнечной батареи

Конструктивно солнечная батарея представляет собой схему преобразователя одного вида энергии в другой. В частности, энергия света преобразуется в электрическую энергию. Причём результатом преобразования становится электрический ток постоянной величины.

Активными элементами конструкции солнечной панели выступают полупроводники, обладающие свойствами фотохимического синтеза. Например, кремний (Si), применением которого были отмечены самые первые исследования в области получения электричества солнца.

Простейший набор из солнечной панели и автомобильного аккумулятора уже составляет конструкцию настоящей домашней энергетической установки

На текущий момент кремний уже не рассматривается безальтернативным химическим элементом, опираясь на который есть смысл сооружать солнечные батареи из панелей, в том числе своими руками.

Более перспективными и эффективными теперь видятся другие представители таблицы Менделеева (в скобках цифры энергетической отдачи):

  1. Арсенид галлия GaAs (кристаллический 25,1).
  2. Фосфит индия InP ( 21,9).
  3. Фосфат индия с галлием + Арсенид галлия + Германий GaInP + GaAs + Ge (32).

Рассматривать солнечную панель глазами обывателя следует как пластину полупроводника (кремния и т.п.), каждая из сторон которой является положительным и отрицательным электродом.

Под влиянием света солнца, в результате химического фотосинтеза, на электродах панели образуются электрические потенциалы. Казалось бы, всё просто. Остаётся только подключить провода к нагрузке и пользоваться электричеством. Но на деле всё несколько иначе.

Как самостоятельно сконструировать солнечную батарею

Чтобы собрать солнечную батарею надо:

  • Изготовить каркас – рамку из алюминиевых уголков или деревянных реек. Форму корпуса, и соответственно, форму солнечной батареи выбирать можно любую. Надо подготовить подложку из ДВП и защитное стекло в размер.
  • Спаять солнечные элементы. Самый ответственный этап: от качественной спайки зависит итоговый КПД батареи. 3. Уложить пластину в каркас и загерметизировать – завершающий этап работы.

Главная часть солнечной батареи составляют фотоэлементы, которые преобразовывают энергию дневного светила в электрическую.

Различие между ними состоит в КПД – до 14% и 9% соответственно, долговечности – 30 и 20 лет службы, и чувствительности к интенсивности солнечного света.

Имеет смысл закупать уценённые фотоэлементы второго сорта – для промышленных целей они не подходят, а существующие дефекты не ухудшают качество самоделок.

Приобретённые фотоэлементы требуется спаять между собой. Отдельный элемент даёт 0.5 В напряжения, обычно домашние умельцы ориентируются на номинальное напряжение готового изделия 18 В.

Правильно объединяя цепь, легко добиться нужных потребительских свойств: параллельное соединение увеличивает силу тока, последовательное – напряжение.

На рабочем столе должен быть паяльник, флюс и припой. Олово проволочное, флюс бескислотный, оставляющий минимум жирных следов.

Кремниевые пластины укладываются на защитное стекло, оставляя зазор 5 мм: при нагревании фотоэлементы расширяются

При спайке важно соблюдать полярность – дорожки с отрицательным знаком и положительным различить не сложно

Обратите внимание!

Лучше приобретать солнечные элементы с уже припаянными плоскими проводниками к солнечным элементам, а самостоятельно только объединять их в цепь. Крайние элементы цепи выводятся на общую шину.

Сердцевина солнечной батареи готова, осталось уложить её в подготовленный корпус. После этого по центру каждого отдельного фотоэлемента наносится одна капля термостойкого герметика (если капель несколько, то при расширении от нагревания пластина может лопнуть) и аккуратно накрывается подложкой, затем крышкой.

При помощи силикона следует загерметизировать стыки, и изделие готово.Что может быть альтернативой промышленным фотоэлементам

Фото солнечных батарей из подручных радиодеталей удивляют своей оригинальностью, хотя технические характеристики имеют не очень впечатляющие.

Обратите внимание!

Для домашнего производства электричества можно использовать разнообразный материал:

  • Транзисторы типа КТ или П, внутри которых расположен полупроводниковый кремниевый элемент. С них срезается металлическая крышка, и открывшееся пластина способна выполнить функции фотоэлемента, её напряжение 0,35 В.
  • Диоды Д223Б. Их преимущества перед другими – напряжение 0,35 В при компактных размерах, удобный корпус, лёгкое очищение от ненужной краски при помощи ацетона для последующей работы.
  • Медная фольга.

Чтобы она приобрела свойства преобразовывать солнечную энергию в электрическую, необходимо осуществить специальную обработку:

  • Обезжирить.
  • Обработать наждачной бумагой с целью удаления защитной оксидной плёнки и возможной коррозии. Прокалить на газовой горелке до образования оксида меди – пластина меняет цвет на чёрный и нагревается после этого полчаса.
  • Заготовка после медленного охлаждения аккуратно промывается под проточной водой с целью удаления черной пленки.

Искомый полупроводник – пластина с тонким слоем медной окиси. В отличие от первых двух вариантов, для дальнейшей работы паяльные работы здесь не нужны.

Соприкасаться они не должны, зажать «крокодильчиками» с проводами. Положительный полюс – к чистой меди, отрицательный – к оксиду. Солёный раствор в прозрачной ёмкости на 2-3 см не доходит до верхней части пластин.

Купить солнечные батареи в виду достаточно высокой цены безболезненно для семейного бюджета может не каждый. Проявите себя в техническом творчестве, порадуйте домочадцев и удивите гостей результатами своего труда.

Обратите внимание!

Как работает солнечная батарея?

Работа солнечной батареи основывается на фотоэлектрическом эффекте. Первый функционирующий фотоэлемент был создан русским ученым Александром Столетовым, но открытие его еще середине XIX приписывают французскому физику Александру Беккерелю.

Фотоэлектрический эффект достигается путем замыкания полупроводников (фотоэлементов) в электрическую цепь. Один полупроводник должен иметь в составе лишние электроны (n-слой), во втором их должно не хватать (р-слой). Лучи солнца способны выбивать лишние электроны из n-слоя, после чего они автоматически направляются на свободные места в р-слое, и наоборот. Таким образом достигается постоянное движение электронов. Вытесненные из р-слоя электроны проходят через аккумулятор и возвращаются в n-слой.

Отдельные фотоэлементы могут обеспечить электроэнергией незначительные по мощности объекты, а для питания крупных объектов требуется объединить множество фотоэлементов в одну электрическую цепь.

Первым в истории фотоэлементом стал селен, но он обладал КПД менее одного процента, поэтому ему сразу же стали искать замену. Нашли ее в кремние и до сих пор этот элемент наиболее широко используется в солнечных панелях.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий