Как сделать блок питания на 12 вольт своими руками — примеры схем

Силовой трансформатор

Силовой трансформатор работает на высоких частотах (до нескольких десятков килогерц), поэтому его можно выполнить на сердечнике не из трансформаторного железа, а на феррите. Также за счет повышенной частоты его размеры будут меньше, чем у сетевого, предназначенного для преобразования на частоте 50 Гц. Расчет импульсного трансформатора достаточно объемен. С ним можно разобраться для общего развития, а для практических целей лучше воспользоваться какой-либо программой, включая онлайн-сервисы.

Интерфейс программы Lite-CalcIT.

Популярностью пользуется программа Lite-CalcIT. Она может рассчитать трансформатор под имеющийся сердечник, а может подобрать оптимальный, исходя из введенных данных.

Выбор трансформатора

Преобразующее напряжение приспособление является одним из главных трансформаторных компонентов. Здесь переменное 220-вольтовое напряжение преобразуется в подобное себе, но немного с пониженной амплитудой.

Обычный понижающий прибор, необходимый для уменьшения вольтажа с привычного 220-вольтового до 12-вольтового, можно использовать в качестве машины трансформаторного типа.

Оптимально брать для прибора конденсатор 470 мкФ ёмкости с 25-вольтовым напряжением. Почему это будет оптимальным вариантом? Это связано с тем, что, когда напряжение выходит из агрегата, то оно становится выше стандартного с вольтажем в 12В. Когда механизм начинает работать, то напряжение возвращается к стандартным показателям (12 В).

Трансформатор

На первичную обмотку трансформатора W1 (иногда её называют сетевой, так как она подключается к сети 220 вольт) поступает входное напряжение. При подаче на первичную обмотку переменное напряжение, в нашем случае — сетевое напряжение 220 В, по магнитопроводу будет протекать переменное электромагнитное поле. Если  на магнитопроводе находится вторая обмотка, электромагнитное поле будет проходить и через вторичную обмотку W2. При этом во вторичной обмотки будет наводится электродвижущая сила, и на вторичной обмотке появится выходное напряжение. Со вторичной обмотки трансформатора выходит переменное, обычно пониженное напряжение для питания устройств напряжением 3,3 В, 5 В, 9 В, 12 В и 15 В и тд. Но бывают и повышающие трансформаторы, у них на входе напряжение ниже чем на выходе. Но мы будем рассматривать понижающие трансформаторы.

Мы возьмем трансформатор на выходе вторичной обмотки которой будет выходить  12 вольт.

Можно уже и таким блоком питания пользоваться, но только если для подключения лампы накаливания на 12 Вольт, ведь на выходе у нас переменное напряжение.

Выпрямитель

В трансформаторном блоке питания используется обычно мостовой выпрямитель с одним, двумя или четырьмя диодами.

Использование мостового выпрямителя показано на данной схеме:

Как работает

Принцип работы у выпрямителя мостового типа следующий: во время течения в полупериоде, электрический ток идет через два диода, которые включены в прямом направлении. Это позволяет конденсатору получать напряжение с пульсацией в два раза большей частотой от питания.

Выше представлена схема как использовать выпрямитель мостового типа в конструкции. Чтобы понять, как работает выпрямитель с постоянным и переменным напряжением мостового типа можно использовать для ознакомления данную схему:

Треугольники на схеме – это диоды, которые позволяют работать мостовому выпрямителю.

Цифровой лабораторный блок питания из модулей с Алиэкспресс

Вот пошаговая инструкция, как сделать цифровой лабораторный блок питания из модулей, которые можно приобрести на AliExpress:

Приобретите модули питания

На AliExpress можно найти большой выбор модулей питания, включая модули постоянного тока (DC) и переменного тока (AC). Некоторые полезные модули, которые можно использовать, включают:

  • Модуль питания постоянного тока (DC-DC) с поддержкой выходного напряжения и тока.
  • Модуль питания переменного тока (AC-DC) с поддержкой выходного напряжения и тока.
  • Цифровой дисплей с управлением яркостью, который можно использовать для отображения выходного напряжения и тока.

Подготовьте блок питания

Для начала необходимо открыть блок питания и удалить все провода, которые идут к разъему ATX. Затем необходимо отключить все компоненты, которые не будут использоваться в лабораторном блоке питания.

Подготовьте модули питания

Соедините модули питания, подключив выходной порт одного модуля к входному порту другого модуля. Это необходимо, чтобы получить два модуля с различными выходными напряжениями.

Подготовьте дисплей

Подключите цифровой дисплей к одному из модулей питания. Настройте его на отображение выходного напряжения и тока. Обычно это можно сделать путем подключения двух проводов к выводам «+» и «-» на модуле питания.

Проверьте работу блока питания

Включите блок питания и проверьте, что дисплей отображает правильное напряжение и ток. Если все работает правильно, то можно приступать к использованию лабораторного блока питания.

Добавьте функции защиты и управления

Для добавления функций защиты и управления можно использовать дополнительные модули, такие как модули защиты от короткого замыкания, модули управления и т.д.

Таким образом, соединение модулей питания с цифровым дисплеем и другими компонентами можно легко создать собственный цифровой лабораторный блок питания.

Описание микросхемы

LM317T является регулятором напряжения. Если трансформатор  будет выдавать до 27-28 Вольт на вторичной обмотке, то мы спокойно можем регулировать напряжение от 1,2 и до 37 Вольт, но я бы не стал подымать планку более 25 вольт на выходе трансформатора.

Микросхема  может быть исполнена в корпусе ТО-220:

или  в корпусе D2 Pack

Она может пропускать через себя максимальную силу тока в 1,5 Ампер, что вполне достаточно для питания ваших  электронных безделушек без просадки напряжения. То есть мы можем выдать напряжение в 36 Вольт при силе тока в  нагрузку до 1,5 Ампера, и при этом наша микросхема все равно будет выдавать также 36 Вольт – это, конечно же, в идеале. В действительности просядут доли вольта, что не очень то и критично. При большом токе в нагрузке целесообразней поставить эту микросхему на радиатор.

Для того, чтобы собрать схему, нам также понадобится переменный резистор на 6,8 Килоом, можно даже и на 10 Килоом, а также постоянный резистор на 200 Ом, желательно от 1 Ватта. Ну и на выходе ставим конденсатор  в 100 мкФ. Абсолютно простая схемка!

⇡#Какая мощность необходима современным игровым ПК

Еще раз отмечу: эта статья в определенной степени привязана к рубрике «Компьютер месяца». Поэтому если вы заскочили к нам на огонек впервые, то я рекомендую ознакомиться хотя бы с августовским выпуском. В каждом «Компьютере месяца» рассматриваются шесть сборок — преимущественно игровых. Похожие системы я использовал и для этой статьи. Давайте знакомиться:

  • Связка Ryzen 5 1600 + Radeon RX 570 + 16 Гбайт ОЗУ — это аналог стартовой сборки (35 000-37 000 рублей за системный блок без учета стоимости ПО).
  • Связка Ryzen 5 2600X + GeForce GTX 1660 + 16 Гбайт ОЗУ — это аналог базовой сборки (50 000-55 000 рублей).
  • Связка Core i5-9500F + GeForce RTX 2060 + 16 Гбайт ОЗУ — это аналог оптимальной сборки (70 000-75 000 рублей).
  • Связка Core i5-9600K + GeForce RTX 2060 + 16 Гбайт ОЗУ — еще один вариант оптимальной сборки.
  • Связка Ryzen 7 2700X + GeForce RTX 2070 + 16 Гбайт ОЗУ — это аналог продвинутой сборки (100 000 рублей).
  • Связка Ryzen 7 2700X + Radeon VII + 32 Гбайт ОЗУ — это аналог максимальной сборки (130 000-140 000 рублей).
  • Связка Core i7-9700K + Radeon VII + 32 Гбайт ОЗУ — еще один вариант максимальной сборки.
  • Связка Core i9-9900K + GeForce RTX 2080 Ti + 32 Гбайт ОЗУ — это аналог экстремальной сборки (220 000-235 000 рублей).

К сожалению, достать процессоры Ryzen 3000 на момент проведения всех тестов мне не удалось, но полученные результаты от этого не станут менее полезными. Тот же Ryzen 9 3900X, , потребляет меньше Core i9-9900K — получается, в рамках экстремальной сборки изучить энергопотребление 8-ядерника Intel будет даже интереснее и важнее.

А еще, как вы могли заметить, в статье используются только массовые платформы, а именно AMD AM4 и Intel LGA1151-v2. Я не стал задействовать HEDT-системы, такие как TR4 и LGA2066. Во-первых, мы уже давно отказались от них в «Компьютере месяца». Во-вторых, с появлением в массовом сегменте 12-ядерного Ryzen 9 3900X и в преддверии скорого выхода 16-ядерного Ryzen 9 3950X такие системы стали уж больно узкоспециализированными. В-третьих, потому, что , что Core i9-9900K все равно дает всем прикурить в плане энергопотребления, в очередной раз доказывая, что заявленная производителем расчетная тепловая мощность мало о чем говорит потребителю.

А теперь перейдем к результатам тестирования.

Если честно, результаты тестирования в таких программах, как Prime95 и Adobe Premier Pro 2019, я привожу больше для ознакомления — для тех, кто не играет и не пользуется дискретными видеокартами. Можете смело ориентироваться на эти данные. В основном же здесь нас интересует поведение тестовых систем в нагрузках, приближенных к максимальным.

А здесь наблюдаются весьма занятные вещи. В целом мы видим, что все рассмотренные системы потребляют не очень много энергии. Самой прожорливой, что вполне логично, стала система с Core i9-9900K и GeForce RTX 2080 Ti, но даже она в стоке (читай — без разгона) потребляет 338 Вт, если речь идет об играх, и 468 Вт — при максимальной нагрузке ПК. Получается, такой системе хватит блока питания на честные 500 Вт. Ведь так?

Безопасность бестрансформаторных БП

Обе электросхемы имеют свои ограничения: они лишены какой-либо изоляции и защиты от сетевого напряжения, что является серьезной проблемой для безопасности. Но благодаря незначительным изменениям, можно адаптировать обе представленные схемы для реального использования и обеспечить соблюдение минимальных стандартов безопасности. Модификации включают:

  1. Добавление предохранителя для защиты от чрезмерного входного тока;
  2. Добавление варистора для защиты от переходных процессов;
  3. Резистор R2 (R3) подключен параллельно C1 (C3) для улучшения электромагнитной устойчивости;
  4. Разделение R1 на два резистора R1 и R2 для обеспечения лучшей защиты от скачков напряжения и предотвращения электрических дуг для резистивной цепи.

Для небольших нагрузок можно снизить напряжение с 220 В переменного тока до нескольких вольт (например 5, 9, 12 или 24), используя только токоограничивающий резистор, как показано на принципиальной схеме. КПД такой схемы чрезвычайно низок (1%), поскольку большая часть энергии теряется в виде тепла через резистор R1. Этот компонент действительно должен проделать большую работу чтобы снизить напряжение с 220 В до 12 В.

В этом примере этот линейный элемент рассеивает в среднем 22 Вт. Следовательно, он должен быть рассчитан не менее чем на 50 Вт. Его мощность рассеяния можно определить по формуле:

Переходные напряжения (за одну секунду) со значениями используемых компонентов показаны на графиках.

График верхний показывает, сколько времени требуется чтобы выходное напряжение достигло 12 В. Это время зависит от постоянной времени схемы, определяемой конденсатором C1. Тут время зарядки конденсатора следующее:

  • C1 = 100 мкФ, T = 25 мс
  • C1 = 470 мкФ, T = 130 мс
  • C1 = 1000 мкФ, T = 290 мс
  • C1 = 4700 мкФ, T = 1,4 сек
  • C1 = 10000 мкФ, T = 3 сек

При постоянном сопротивлении нагрузки пульсации выходного напряжения зависят от емкости конденсатора С1. Чем больше емкость конденсатора, тем меньше пульсации выходного напряжения. При использовании указанных выше конденсаторов уровень пульсаций, измеренный как размах напряжения сигнала, выглядит следующим образом:

  • C1 = 100 мкФ, пульсации = 1,2 Vpp
  • C1 = 470 мкФ, пульсации = 261,7 mVpp
  • C1 = 1000 мкФ, пульсации = 121,5 mVpp
  • C1 = 4700 мкФ, пульсации = 25,3 mVpp
  • C1 = 10 000 мкФ, пульсации = 11,9 mVpp

Но что более важно чем пульсация, на рисунке видно что выходное напряжение от источника питания не достигает желаемого напряжения 12 В, а только около 11,3 В

Оказывается даже без нагрузки при подключении выходное напряжение всегда ниже 12 В. Это падение напряжения вызвано диодом D2. Помещенный в это место диод Шоттки мог бы уменьшить его, но не до нуля.

ИБП на микросхеме

Выпускается множество микросхем с функцией ШИМ-контроллера. Далее рассматривается несколько схем с использованием самых популярных из них.

TL494

Поскольку встроенные ключи данной микросхемы не обладают мощностью, достаточной для непосредственного управления силовыми транзисторами инвертора (T3 и T4), вводится промежуточное звено из трансформатора TR1 (управляющего) и транзисторов T1, T2.

Схема на микросхеме TL494

Если в наличии есть старый БП от компьютера, управляющий трансформатор можно взять оттуда. Состав обмоток оставляют без изменений. В качестве силовых рекомендуется использовать биполярные транзисторы MJT13009 — схема окажется более надежной. При использовании транзисторов MJE13007, рассчитанных на меньший ток, схема будет рабочей, но слишком чувствительной к перегрузкам.

Дроссели L5, L6 также извлекаются из поломанного компьютерного БП. Первый перематывают, поскольку в оригинальном исполнении он рассчитан на несколько уровней напряжения. На желтый магнитопровод (другие не подойдут) в виде кольца наматывают около 50 витков медного провода диаметром 1,5 мм. Силовые транзисторы T3, T4 и диод D15 в процессе работы сильно греются, потому устанавливаются на радиаторы.

IR2153

Из всех микросхем эта стоит дешевле всего, потому многие предпочитают собирать БП на ней. Здесь драйвер подключен не к шине +310 В, а через резистор к сети. При таком подключении снижена выделяемая на резисторе мощность.

Схема на микросхеме IR2153

В схеме предусмотрены:

  1. ограничение пускового тока (мягкий старт или софт-старт). Компонент запитан от сети через гасящий конденсатор С2;
  2. защита от короткого замыкания и перегрузки. Сопротивление R11 используется как датчик тока. Ток срабатывания защиты регулируется подстроечным сопротивлением R10.

О срабатывании защиты сообщает светодиод HL1. Напряжение на выходе — до 70 В, с двоякой полярностью. Число витков на первичной обмотке импульсного трансформатора — 50, на каждой из 4-х вторичных — 23. Выбор сечения проводов в обмотках и типа сердечника зависит от желаемой мощности.

UC3842

Еще одна недорогая микросхема, при этом весьма надежная и потому очень популярная. При включении ток, заряжающий конденсатор С2, ограничивается терморезистором R1.

Схема на микросхеме UC3842

Сопротивление последнего в этот момент составляет 4,7 Ом, затем по мере разогрева оно снижается на порядок, после чего данный элемент из схемы как бы «выключается». Стабилизация выходного напряжения — за счет обратной связи (петля «вторичная обмотка трансформатора Т1 – диод VD6 – конденсатор С8 – резистор R6 – диод VD5»).

Напряжение петли задается резистивным делителем R2 – R3. Цепочка «R4 – C5» — таймер для внутреннего генератора импульсов UC3842. ШИМ-контроллер и прочие микросхемы устанавливаются на пластинчатые радиаторы с площадью не менее 5 кв. см.

БП на 19V

БП ноутбучного типа на 19В, 90W

Напряжение в 19В широко используется в настольной компьютерной технике, чаще всего в ноутбуках, моноблоках, мониторах, сканерах. В эту категорию можно отнести БП от принтеров, они мощные, бывает 16В, 20В, 24В, 32В.

У меня давно валяется отличный блок питания для светодиодов на 90W и 19V от ноутбука Asus. Такой мощности хватит, чтобы запитать светодиодную ленту на 6000 Люмен, а этого хватит, чтобы сделать диодное освещение комнаты 20 квадратов. Но БП не 12 вольт, и потребуется доработка. Внутрь корпуса мы не полезем, перепаивать схему под 12 вольт сложно, долго и надо быть электронщиком. Сделаем проще, подключим  небольшой  понижатель со стабилизатором. Существует два типа.

Тип №1

Стабилизатор  на 7812

Стабилизатор на микросхеме типа КРЕН 7812 (lm317), выглядит почти как транзистор, при установке на радиатор охлаждения выдерживает ток 1 Ампер. Этот вариант устаревший и громоздкий. Для использования всей мощности ноутбучного БП потребуется 5-6 таких (или 1 большая) и большой алюминиевый радиатор для охлаждения.

Тип №2

Импульсный на специализированных микросхемах

Современный импульсный стабилизатор, миниатюрен, не греется, простой как 3 рубля. В русских магазинах за него просят 600-900 р, цена сильно завышенная. У китайцев на 3 ампера стоит 50 р., 5-7А продается за 100-150 р., поэтому рекомендую заказать пару штук на Aliexpress.

Рекомендую использовать импульсный, КПД у него выше 80-90%, проще и дешевле. Только не покупайте источник тока на LM2596, вам нужен источник напряжения. Чтобы найти в китайском интерне-магазине используйте запросы:

  • LM2596 power supply;
  • 12v switching regulator;
  • voltage regulator 12v 7a;

Выбор напряжения

Необходимое напряжение определяется устройством, для питания которого будет использоваться блок питания. Можно использовать напряжение в 12В, 3.3В, 5В и 9В. Это самые популярные значения напряжения на выходе, при этом оно может иметь и другие значения. Все зависит от конструкции трансформатора, количества обмоток и размер сечения, используемого магнитопровода.

12В

Блок питания с напряжением на выходе в 12В широко используются в быту с конца прошлого столетия. Их применяют для питания котлов отопления, светодиодных лент, игровых устройств, сварочных аппаратов, телевизионных приставок и различных бытовых приборов.

3.3 В

Блоки с напряжением этого уровня используются преимущественно в персональных компьютерах, но могут использоваться и для подзарядки других устройств, например, в сварочных аппаратах.

Эта разновидность блоков для питания устройств широко применяется для работы со строительной техникой и различных бытовых устройств. Например, им подпитывается дрель, болгарка или перфоратор.

Диоды для блока питания

Для выпрямления переменного напряжения бытовой электрической сети в схемах блоков питания и прочих электронных устройств используют диоды, собираемые по мостовой схеме. Схематично полупроводниковый диод выглядит следующим образом.

Устройство полупроводникового диода

Для устройства диодного моста используется 4 однотипных диода, которые соединяются определённым образом, приведённым на следующей схеме. Их технические характеристики должны соответствовать величине протекающего через них тока, а также величине допустимого обратного напряжения.

Схема соединения диодов по мостовой схеме

Импульсный блок питания 12 V своими руками — схема

Существует большое количество различных схем блоков питания, имеющих различные технические характеристики и собранных на различных электронных компонентах. Ниже представлена схема импульсного БП с вторичным напряжением 12 Вольт.

Принципиальная схема импульсного блока питания

При самостоятельном изготовлении подобных устройств необходимо помнить, что для обеспечения заданной пульсации напряжения на выходе ёмкость конденсаторов должна приниматься из расчёта 1 мкФ на 1 Вт выходной мощности. Электролитические конденсаторы должны быть рассчитаны на напряжение не менее 350 В. Оптимальное соотношение мощности БП и технических характеристик электронных компонентов приведено в следующей таблице:

Блок питанияЭлементы схемы
Мощность, кВтТок, АТок диода, АЁмкость конденсатора, мкФ
0,10,40,2100
0,20,80,4200
0,31,20,6300
0,521500
1421 000
2842 000
31263 000
520105 000

Блок питания повышенной мощности

Более мощным блок питания можно сделать, добавив в схему несколько мощных каскадов на транзисторах Дарлингтона типа TIP2955. Один каскад даст прибавку нагрузочного тока в 5 А, шесть составных транзисторов, подключенных параллельно, обеспечат нагрузочный ток в 30 А.

Транзисторы Дарлингтона типа TIP2955

Схема, обладающая такой выходной мощностью, требует соответствующего охлаждения. Транзисторы должны быть обеспечены радиаторами. Возможно, понадобится и дополнительный вентилятор охлаждения. Кроме того, можно защититься еще плавкими предохранителями (на схеме не показано).

На рисунке показано подключение одного составного транзистора Дарлингтона, дающего возможность увеличения выходного тока до 5 ампер. Можно увеличивать и дальше, подключая новые каскады параллельно с указанным.

Подключение одного составного транзистора Дарлингтона

Внимание! Одним из главных бедствий в электрических цепях является внезапное короткое замыкание в нагрузке. При этом, как правило, возникает ток гигантской силы, который сжигает все на своем пути. В этом случае сложно придумать такой мощный блок питания, который способен это выдержать

Тогда применяют схемы защиты, начиная от плавких предохранителей и кончая сложными схемами с автоматическим отключением на интегральных микросхемах

В этом случае сложно придумать такой мощный блок питания, который способен это выдержать. Тогда применяют схемы защиты, начиная от плавких предохранителей и кончая сложными схемами с автоматическим отключением на интегральных микросхемах.

Процесс сборки

Используя первичную цепь трансформатора, необходимо первоначально установить выключатель и предохранитель. При использовании вторичной схемы сборки, питание первоначально поступает на диодный мост, после попадает в конденсатор электролитов. Уже от них, напряжение понижается посредством специального модуля.

Далее модуль отправляет напряжение на вольтамперметр, который зафиксировал выходящее напряжения.

Схема сборки мощного лабораторного блока питания с возможностью регулировки выходного напряжения. В этом случае силовые элементы выставляются внизу корпуса, конденсатор необходимо разместить между диодным мостом и трансформатором.

Далее, после этого необходимо соединить все три составляющие: диодный мост, модуль понижения и трансформатор.

После этого необходимо распаять резисторы, подключить к ним выключатель прибора. Распаять провода ампервольтметра. После того, как основные элементы были подсоединены, необходимо вернуть все элементы из передней части панели устройства на свое первоначальное место. Таким образом, собрав все элементы в единое устройство, получаем возможность регулировки напряжения начиная от 1 в, заканчивая 28 в.

При коротком замыкании устройство выдает примерно 9А.

Схемы регуляторов напряжения и тока на линейных регуляторах LMxxx

Линейные регуляторы LMxxx — это популярные интегральные микросхемы, которые широко используются для построения простых схем блоков питания. С помощью LMxxx можно построить как регулятор напряжения, так и регулятор тока. Ниже приведены простые схемы регуляторов напряжения и тока на линейных регуляторах LMxxx.

Регулятор напряжения на LM317

Эта схема позволяет получить выходное напряжение в диапазоне от 1,2 В до 37 В. Для установки нужного выходного напряжения необходимо подобрать соответствующие резисторы R1 и R2 по следующей формуле:

Vout = 1,25 * (1 + R2/R1)

Регулятор тока на LM317

Эта схема позволяет установить максимальный выходной ток, который будет постоянным при изменении нагрузки. Для установки нужного выходного тока необходимо подобрать резистор R1 по следующей формуле:

Iout = 1,25 / R1

Регулятор напряжения на LM7805

Эта схема позволяет получить выходное напряжение в 5 В. Для установки другого выходного напряжения можно использовать резисторы R1 и R2 по следующей формуле:

Vout = 5 * (1 + R2/R1)

Регулятор тока на LM7805

Эта схема позволяет установить максимальный выходной ток, который будет постоянным при изменении нагрузки. Для установки нужного выходного тока необходимо подобрать резистор R1 по следующей формуле:

Iout = 1,25 / R1

Составляющие части устройства

Собираемый нами сегодня механизм состоит из трёх частей:

понижающего трансформатора, являющегося наиболее важной и неотъемлемой частью;
конденсатора, с помощью которого стабилизируется текущее напряжение до оптимальных показаний;
диодов, которые необходимы для сборки диодного моста своими руками.

Каждая из частей очень важна. Если в какой-либо из них допустить ошибку при сборке, то это приведёт к тому, что неправильно будет работать собранный агрегат и подключённый к системе бытовой электрический прибор. А также собранный аппарат может вообще не включиться. Рассмотрим каждый из компонентов механизма более подробно.

Блок питания 12В 5А на интегральной микросхеме LM338

Напряжение от сети поступает к понижающему трансформатору через плавкий предохранитель FU1 на 7А. Варистор V1 на 240 вольт, используется для защиты схемы блока питания от выбросов напряжения в электросети. Трансформатор Tр1 понижающий с напряжение на вторичной обмотке не ниже 15 вольт с током нагрузки не менее 5 ампер.

Пониженное напряжение с вторичной обмотки поступает на диодный мост, состоящий из четырех выпрямительных диодов VD1-VD4. На выходе диодного моста установлен электролитический конденсатор С1 предназначенный для сглаживания пульсаций выпрямленного напряжения. Диоды VD5 и VD6 используются в качестве устройств защиты для предотвращения разряда конденсаторов C2 и C3 от незначительного тока утечки в регуляторе LM338. Конденсатор С4 используется для фильтрации высокочастотной составляющей блока питания.

Для нормальной работы блока питания на 12В, стабилизатор напряжения LM338 необходимо установить на радиатор. Вместо выпрямительных диодов VD1-VD4 можно использовать выпрямительную сборку на ток не менее 5 ампер, например, KBU810.

Проблемы простого блока питания с нагрузкой

Сопротивление, нарисованное на схеме – это эквивалент нагрузки. Нагрузка должна быть такова, чтобы ток, ее питающий, при подаваемом напряжении в 12 В не превысил 1 А. Можно рассчитать мощность нагрузки и сопротивление по формулам.

Откуда сопротивление R = 12 Ом, а мощность P = 12 ватт. Это значит, что если мощность будет больше 12 ватт, а сопротивление меньше 12 Ом, то наша схема начнет работать с перегрузкой, будет сильно греться и быстро сгорит. Решить проблему можно несколькими способами:

  1. Стабилизировать выходное напряжение так, чтобы при изменяющемся сопротивлении нагрузки ток не превышал максимально допустимого значения или при внезапных скачках тока в сети нагрузки – например, в момент включения некоторых приборов – пиковые значения тока срезались до номинала. Такие явления бывают, когда блок питания запитывает радиоэлектронные устройства – радиоприемники, и пр.
  2. Использовать специальные схемы защиты, которые бы отключали блок питания при превышении тока на нагрузке.
  3. Использовать более мощные блоки питания или блоки питания с большим запасом мощности.

⇡#Выводы

Если вы внимательно прочитали статью, то выделили для себя несколько главных моментов, которые надо иметь в виду при выборе блока питания. Перечислим их все еще раз:

  • ориентироваться на заявленные производителем видеокарты или процессора показатели TDP, к сожалению, нельзя;
  • энергопотребление компьютерной техники год от года несильно меняется и находится в определенных рамках — поэтому купленный сейчас качественный блок питания прослужит долго и верно службу и точно пригодится во время сборки следующей системы;
  • потребности в кабель-менеджменте системного блока тоже влияют на выбор БП определенной мощности;
  • не все разъемы питания на материнской плате необходимо использовать;
  • не всегда блок питания меньшей мощности оказывается выгоднее (в плане цены) более мощной модели;
  • при выборе блока питания надо смотреть в том числе на то, сколько ваттов устройство выдает по 12-вольтовой линии;
  • поддержка определенного стандарта 80 PLUS косвенно говорит о качестве элементной базы блока питания;
  • совершенно незазорно использовать блок питания, честная мощность которого вдвое (или даже больше) превышает максимальное энергопотребление компьютера.

Довольно часто можно услышать фразу: «Больше — не меньше». Этот весьма лаконичный афоризм отлично описывает ситуацию при выборе блока питания. Берите для своего нового ПК модель с хорошим запасом мощности — хуже точно не будет, а в большинстве случаев будет только лучше. Даже для недорогого игрового системного блока, который при максимальной нагрузке потребляет около 220-250 Вт, все равно есть смысл взять хорошую модель с честными 600-650 Вт. Потому что такой блок:

  • будет работать тише, а в случае с некоторыми моделями — абсолютно бесшумно;
  • будет холоднее;
  • будет эффективнее;
  • позволит спокойно разогнать систему, увеличив производительность центрального процессора, видеокарты и оперативной памяти;
  • позволит без проблем совершить апгрейд основных компонентов системы;
  • переживет несколько апгрейдов, а также (если блок питания действительно хороший) поселится во втором или третьем системном блоке;
  • позволит еще и сэкономить при последующей сборке системного блока.

Думаю, мало кто из читателей откажется от хорошего блока питания. Понятно, что не всегда есть возможность купить сразу качественное устройство с большим заделом на будущее. Иногда при покупке нового системника и ограниченном бюджете хочется и процессор взять помощнее, и видеокарты побыстрее, и SSD более высокой емкости — всё это понятно. Но если возможность купить хороший блок питания с запасом есть — экономить на нем не надо.

Выражаем благодарность компаниям ASUS и Corsair, а также компьютерному магазину «Регард» за предоставленное для тестирования оборудование.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий