Описание и изготовление индикатора напряжения

Принцип работы индикаторной отвертки

Вне зависимости от вида прибора, основная идея его заключается в подаче сигнала о наличии напряжения в сети. При этом контактные модели определяют напряжение посредством касания к оголенному проводнику (жиле кабеля, контактным поверхностям приборов, проводящей ток жидкости и так далее), а бесконтактные «считывают» электромагнитное поле участка.

Однако в любом случае электрическую цепь в обычной индикаторной отвертке требуется замкнуть для получения информации – а именно, прижать пальцем контактную пластину на конце изделия. Человек – тоже проводник электроэнергии, на этом и основан принцип работы прибора.

Все изделия делят на группы не только по особенностям конструкции, но и по чувствительности. Самыми точными заслуженно считаются качественные электронные модели, самими малочувствительными – изделия с неоновой лампой. Последний тип инструмента воспринимает напряжение от 60 В.

Настройка

Параметров, которые необходимо задать перед полноценным использованием измерителя мощности, немного — это установка правильной даты, времени, текущего дня недели и настройка тарифов на потребляемую электроэнергию.

После снятия пленочной вставки между батарейками, исключающей их разряд во время транспортировки, происходит первичный запуск Энергомера, в ходе которого около 10 секунд на дисплее отображаются все возможные комбинации символов. Как видно по фотографии ниже, возможен вывод значений четырех знаков до и одного знака после запятой. Именно этим фактом и ограничен подсчет потребленной электроэнергии — максимум 9999,9 кВт*ч.

Даже без первичной настройки прибор через несколько секунд после включения покажет на дисплее напряжение в сети переменного тока. Последовательные нажатия кнопки FUNC переключают по кругу режимы отображения результатов мониторинга в реальном времени: напряжение в вольтах (VOLT), силу тока в амперах (AMP), мощность в ваттах (WATT), потребленную энергию в кВт*ч (kWh), цену потребленной энергии в условных единицах (TOTAL PRICE) и общее время, за которое сделан расчет.

Для корректного подсчета экономической составляющей необходимо настроить внутренние часы, указав время и текущий день недели. Делается это последовательным нажатием кнопки SET, и выбором значений кнопкой UP. В режиме мониторинга кратковременное нажатие кнопки UP переключает отображение времени с 24-часового на 12-часовой формат.

Чтобы задать цену 1 кВт*ч и временные интервалы двухтарифных начислений (если они у вас есть) необходимо длительно удерживать кнопку FUNC, после чего на экране отобразится надпись PRICE 1 и последовательные нажатия кнопки SET будут выбирать редактируемое поле, а кнопка UP менять его значение. Установка настроек идет по следующему циклу: установка стоимости -> выбор дней недели, в которые действует первый тариф -> установка времени начала первого тарифного интервала. Для настройки второго тарифного временного интервала нужно в режиме редактирования первого коротко нажать кнопку FUNC, при этом надпись на экране изменится на PRICE 2 и все будет аналогично первому тарифу. Закончить ввод параметров необходимо удержанием кнопки FUNC две секунды. Если у вас единый тариф и днем и ночью достаточно только ввести его стоимость.

Если на экране устройства по прошествии некоторого времени горит надпись OVER, значит, память переполнилась, и устройство прекратило считать стоимость. Для сброса на нулевое значение необходимо удерживать кнопку FUNC более 5 секунд.

Отвертка

Самая простая и распространенная это пассивная отвертка индикатор. С ее помощью можно узнать есть или нет напряжение в цепи. Основным достоинством данного вида отвертки является то, что индикатор показывает наличие либо отсутствие напряжения после прикосновения к контакту.

На рукоятке расположен контакт, который необходимо зажимать, когда подносим к проводнику. Результат наличия тока показывает неоновая лампа, встроенная в рукоять.

Электрики редко используют этот вид индикатора напряжения сети из-за низкой функциональности. Такой вид индикаторов больше подходит для домашнего пользования.

Основные типы индикаторов напряжения

Индикаторы напряжения используются для измерения и отображения напряжения в электрических цепях. Они могут быть классифицированы на два основных типа: аналоговые и цифровые.

Аналоговые индикаторы напряжения

Аналоговые индикаторы напряжения представляют собой приборы, которые используют стрелку или масштабную линейку для отображения уровня напряжения. Они могут быть выполнены как с механическим, так и с электронным приводом. Аналоговые индикаторы напряжения могут быть использованы для измерения как постоянного, так и переменного напряжения.

Одним из преимуществ аналоговых индикаторов напряжения является их простота и надежность. Они также могут быть использованы для быстрого определения напряжения без необходимости проведения точных измерений. Однако, они могут быть менее точными, чем цифровые индикаторы напряжения.

Цифровые индикаторы напряжения

Цифровые индикаторы напряжения отображают уровень напряжения на цифровом дисплее. Они могут быть использованы для измерения как постоянного, так и переменного напряжения. Цифровые индикаторы напряжения могут быть более точными, чем аналоговые индикаторы, так как они обеспечивают более точные измерения.

Цифровые индикаторы напряжения также могут иметь дополнительные функции, такие как измерение сопротивления, тока и частоты. Они могут быть более удобными для использования в современных электронных системах, так как они часто имеют более компактный дизайн и дополнительные функции.

В целом, выбор между аналоговым и цифровым индикатором напряжения зависит от требований конкретной задачи. Если требуется быстрое определение уровня напряжения без необходимости проведения точных измерений, то аналоговый индикатор может быть предпочтительным. Если же требуется более точное измерение напряжения, то цифровой индикатор может быть более подходящим.

Выбор индикаторной отвертки

При  покупке индикаторной отвертки  рекомендуется выбирать её по необходимым параметрам, исходя из того, в каких условиях она будет эксплуатироваться

Важно знать диапазон напряжений. Для работы  в однофазной сети, интервал измерений лежит в пределах 70-250 В или 100-250 В. В трехфазных цепях есть модели, которые способны производить изменения при напряжении до 400 В

Есть низковольтные  модели  (12-24-36 В). Габариты отвёрток  бывают в  двух разных вариациях:  12см и 18-19 см. Малогабаритным инструментом удобно работать в тесных  пространствах, длинными, наоборот, удобно дотянуться до труднодоступных проводов или контактов

В трехфазных цепях есть модели, которые способны производить изменения при напряжении до 400 В. Есть низковольтные  модели  (12-24-36 В). Габариты отвёрток  бывают в  двух разных вариациях:  12см и 18-19 см. Малогабаритным инструментом удобно работать в тесных  пространствах, длинными, наоборот, удобно дотянуться до труднодоступных проводов или контактов.

Указатели напряжения до 1000 В. Испытание средств защиты

admin

1. Для проверки наличия или отсутствия напряжения в электроустановках до 1000 В применяются указатели двух типов:

– двухполюсные – работающие при протекании активного тока;

– однополюсные – работающие при емкостном токе.

2. Двухполюсные указатели предназначены для электроустановок переменного и постоянного тока, а однополюсные – для электроустановок переменного тока.

3. Двухполюсные указатели состоят из двух корпусов, содержащих элементы электрической схемы. Элементы электрической схемы соединяются между собой гибким проводом, не теряющим эластичности при отрицательных температурах, длиной не менее 1 м. В местах вводов в корпуса соединительный провод имеет амортизационные втулки или утолщенную изоляцию.

4. Электрическая схема двухполюсного указателя с визуальной индикацией может содержать прибор стрелочного типа или цифровую знакосинтезирующую систему (с малогабаритным источником питания индицирующей шкалы). Указатели этого типа могут применяться на напряжение от 0 до 1000 В.

5. Электрическая схема однополюсного указателя напряжения должна содержать элемент индикации с добавочным резистором, контакт – наконечник и контакт на торцевой (боковой) части корпуса, с которым соприкасается рука оператора.

6. Длина неизолированной части контактов – наконечников не должна превышать 5 мм. Контакты-наконечники должны быть жестко закреплены и не должны перемещаться вдоль оси.

7. Эксплутационные испытания указателей напряжения до 1000 В заключаются в определении напряжения индикации, проверке схемы повышенным напряжением, измерении тока, протекающего через указатель при наибольшем рабочем напряжении, испытании изоляции повышенным напряжением.

8. Для проверки напряжения индикации у двухполюсного указателя напряжение от испытательной установки прикладывается к контактам – наконечникам, у однополюсного – к контакту – наконечнику и контакту на торцевой (боковой) части корпуса.

9. Напряжение индикации указателей напряжения до 1000 В должно быть не выше 50 В.

10. Для проверки схемы у двухполюсного указателя напряжение от испытательной установки прикладывают к контактам – наконечникам, у однополюсного указателя – к контакту – наконечнику и контакту на торцевой (боковой) части в соответствии со схемами рис 1.

11. Испытательное напряжение при проверке схемы должно превышать наибольшее значение рабочего напряжения не менее чем на 10%. Продолжительность испытания – 1 минута.

12. Значение тока, протекающего через указатель при наибольшем значении рабочего напряжения, не должно превышать:

– 0,6 мА для однополюсного указателя напряжения;

– 10 мА для двухполюсного указателя напряжения с элементами, обеспечивающими визуальную или визуально – акустическую индикацию сигнала;

– для указателей напряжения с лампой накаливания до 10 Вт напряжением 220 В значение тока определяется мощностью лампы.

13. Значение тока измеряется с помощью амперметра, включенного последовательно с указателем в соответствии со схемой рис. 2.

14. Для испытания изоляции указателей напряжения повышенным напряжением у двухполюсных указателей оба изолирующих корпуса обертываются фольгой, а соединительный провод опускается в заземленный сосуд так, чтобы вода закрывала провод, не доходя до рукоятки на 9 – 10 мм. Один провод от испытательной установки присоединяют к контактам – наконечникам, второй, заземленный, – к фольге и опускают его в воду в соответствии с рис. 3.

15. У однополюсных указателей напряжения изолирующий корпус по всей длине до ограничительного упора обертывают фольгой. Между фольгой и контактом на торцевой части корпуса оставляют разрыв не менее 10 мм. Один провод от испытательной установки присоединяется к контакту – наконечнику, второй, заземленный, – к фольге.

16. Изоляция указателей напряжения до 500 В должна выдерживать напряжение 1 кВ, а указателей напряжения выше 500 В – 2 кВ. Продолжительность испытания – 1 минута.

17. В эксплуатации механические испытания указателей не проводят.

Рис.1. Схемы испытания однополюсного указателя напряжения до 1 кВ

Рис.2. Схемы испытания двухполюсного указателя напряжения до 1 кВ

Рис.3. Схемы испытания изоляции двухполюсного указателя напряжения до 1 кВ

Рубрика Документация, Инструкции Метки: Испытания, СИЗ, Указатель напряжения

Индикаторная отвертка на батарейках (с функцией прозвонки), контактного типа

Этот вид тестерных отверток для проверки напряжения внешне отличить почти невозможно от описанных выше. Зато по функционалу они отличаются, да и схематически тоже. Этот прибор сделан на основе полевого или составного транзистора, в одну из цепей встроен светодиод. Источником питания в данной модели являются батарейки в форме «таблетки». Обычно батареек две, но может быть и три. На торце рукоятки также есть металлическая пластина, но касаться ее надо не всегда. И об этом следует помнить.

Индикаторная отвертка со светодиодом, полем транзистором и батарейками

Отличить эту отвертку можно коснувшись двух ее концов — жала и кнопки на рукоятке. При этом загорается светодиод. Этим, кстати, проверяем ее работоспособность. Это надо делать каждый раз перед тем как пользоваться индикаторной отверткой. Ведь если батарейки сели, светодиод просто не будет светиться… В результате можно прикоснуться к фазе…

Индикаторная отвертка с батарейками позволяет не только определить наличие фазы. Кроме фазы можно еще:

  • Определить наличие нуля. Ничем другим, кроме мультиметра, вы ноль не определите. Обычно его «определяют» методом исключения. Там, где обычная индикаторная отвертка не горит, считается ноль. Но он тоже может быть в обрыве. И тогда приходится прозванивать цепь, что не всегда удобно. А так, при помощи индикатора напряжения с батарейками, можно сразу отследить наличие «нуля» и целостность провода.
  • Прозвонить провод, проверить целостность предохранителей, целостность ТЭНа, ламп накаливания, трансформаторных обмоток, определить наличие обрыва в любом оборудовании.
  • Проверить на пробой диод, найти его анод и катод.
  • Определение наличие напряжения на изолированном проводнике. Это точно позволяет найти место обрыва проводника.
  • Найти проводку в стене. Это не полноценный детектор проводки, но с его помощью можно предположить, где проходит провод. Правда, есть ограничение: расстояние от провода до поверхности стены не должно превышать 1,5 см.

Две схемы индикаторной отвертки с батарейками и светодиодом

С учетом того, что стоит такая индикаторная отвертка совсем немного — от 150 рублей до 300 рублей, функциональность более чем впечатляющая. Только надо уметь с ней работать и следить за состоянием элементов питания. В этом их главный недостаток, ведь батарейки «таблетки» могут быстро разряжаться. Чтобы работоспособность тестера проводки сохранялась дольше, лучше в нерабочее время щуп изолировать. Например, подобрать кусок кембрика (изоляционной трубки из ПВХ) подходящего диаметра. Этим куском изоляции, как колпачком, закрывать щуп.

Это интересно: Особенности выбора набора накидных гаечных ключей с трещоткой: разъясняем со всех сторон

Принцип действия и виды индикаторов

Сегодня в виде обычной отвертки выпускается большое количество индикаторов напряжения. Все они имеют общий принцип работы, но могут отличаться устройством и формой выполнения. Условно такие индикаторы разделяют на три группы. Рассмотрим их более детально.

Простая индикаторная отвертка

Устройство обычного пробника в виде отвертки довольно простое:

  • Жало выступает в роли проводника;
  • К нему подключен тиристор, понижающий силу тока до безопасной для человека величины;
  • Следом расположен светодиод, который соединен с контактным элементом, выведенным на торец отвертки;
  • Корпус выполнен из прозрачного пластика, что позволяет видеть, когда светодиод загорается.

Такую конструкцию имеет самый простой и дешевый пробник напряжения, который позволяет определить только рабочую фазу. Ноль этой отверткой можно найти методом исключения. Для того чтобы найти фазу в проводах при помощи индикаторной отвертки, нужно поступить следующим образом:

  • Жалом отвертки поочередно прикасаются ко всем проводам контактной группы: розетки, выключателя или обрыва в проводке. При этом нужно пальцем (наиболее удобно большим) прикасаться к контактной пластине, выведенной на корпус;
  • При прикосновении к фазе, индикатор начнет светиться, а ноль свечения диода не вызывает.

Такой нехитрый способ показывает, где фаза или ноль в проводах или розетке

После этого можно правильно произвести подключение бытового прибора, для которого важно соблюдать полярность

Отвертка с батарейкой

Индикаторные отвертки на батарейках могут быть разного вида и иметь дополнительный функционал

Принцип работы, внешний вид и устройство такого пробника напряжения ничем не отличается от вышеописанной отвертки. Отличием является наличие двух или трех батареек «таблеток», скрытых в ручке. Этот прибор является более универсальным и позволяет выполнить такие действия:

  • Найти фазу и ноль в проводах под напряжением;
  • Определить обрыв в обесточенной цепи. Для этого одного конца провода нужно коснуться рукой, а второго – щупом отвертки. Если цепь не нарушена, индикатор загорится. При обрыве в проводке, индикатор напряжения ничего не покажет;
  • Кроме этого, такой инструмент за счет наведенного магнитного поля показывает расположение скрытой проводки. Для этого отвертка пальцами берется за жало, а ручкой ведется вдоль стены. При обнаружении запитанной проводки светодиод загорится.

Универсальный пробник

Такое устройство отверткой называют больше по привычке, скорее это мини-тестер. Работает инструмент от батареек, а внешний вид сильно отличается от предыдущих вариантов. На передней панели прибора располагается два светодиода (красный и зеленый), также в зависимости от модели может быть небольшой дисплей, на который выводится показатель измеренного напряжения.

Универсальный тестер производства MASTECH Индикатор имеет кнопку выбора режима измерения. Рассмотрим принцип и назначение различных режимов:

  • Режим O применяется для того, чтобы найти фазу контактным способом. При наличии напряжения на проводнике, загорается красный светодиод;
  • В режиме L прибор работает при пониженной чувствительности. Этот режим позволяет бесконтактно определить наличие напряжения в скрытой проводке глубиной залегания до 1,5 см. При обнаружении электромагнитного поля загорается зеленый светодиод и раздается писк зуммера;
  • Положение H обозначает режим высокой чувствительности. Этот режим позволяет найти фазу и ноль (подключенную проводку) на глубине до 3 см.

Также это устройство позволяет произвести проверку цепи на разрыв, измерить сопротивление до 100 МОм, можно определить полярность, и измерить напряжение источника постоянного тока до 36 В.

Этот прибор пригодится в качестве домашнего тестера: он позволяет проверить работоспособность лампы или другого электрического прибора с замкнутой цепью. Можно проверить любой нагревательный прибор, например, тэн или камин при пробое на корпус.

Общее устройство и принцип работы

Световыми индикаторами называют
указатели, работающие на основе источника света. Светодиодные приборы работают за
счет светового излучения из p-n-перехода при прохождении через него тока.

В быту используются переносные приборы
для индикации, в том числе мультиметры. Основное предназначение – определение
наличия/отсутствия тока и разности значений напряжения. Вольтаж зависит от типа
прибора, по конструкции индикаторы бывают одно- и двухполюсные. При первом
варианте токоведущая часть одна, при втором – две.

В магазинах продаются простые тестеры в виде авторучек и отверток. Конструкция размещается в корпусе из диэлектрика со смотровым окошком. Основные элементы: светодиод и резистор. Снизу располагается щуп, сверху металлический контакт для касания рукой.

Эти приборы позволяют:

  • определить
    ноль и фазу;
  • вольтаж
    на предохранительном оборудовании.

Однополюсные тестеры-отвертки делятся
на:

  • пассивные;
  • с
    дополнительными функциями;
  • с
    расширенным функционалом.

Пассивный тестер используется для
определения наличия напряжения в электрооборудовании и проводке. Для контакта
используется плоская отвертка, сопротивление создает схема в ручке. Светодиод
загорается при прикосновении к детали, по которой течет ток.

Преимущества пассивной отвертки:

  • простая
    конструкция;
  • не
    требуется источник питания;
  • не
    требуются специальные знания.

Недостатка два: тусклое свечение светодиода и необходимость во время тестирования снять перчатки.

Прибор с дополнительным функционалом
можно использовать в двух режимах: бесконтактном и контактном. Определяется
наличие напряжения, можно проверить провода, кабели, предохранители.
Запитывается такой тестер от батареек. Ноль и фаза определяется так же, как с
пассивной отверткой. При тестировании бесконтактным методом прибор держится, не
касаясь нижней части. К проводнику подносится верхняя часть.

Индикаторы с расширенным функционалом
цифровые. Сделать что-то подобное самостоятельно невозможно.

Большинство двухконтактных индикаторов
профессиональные. По функционалу они почти не отличаются от одноконтактных. Эти
приборы оснащены двумя щупами, на концах которых острые штыри. В процессе
тестирования можно узнать значение напряжения (параметр отображается на экране).

Принцип работы указателя напряжения

Рассмотрим два варианта: двухполюсный/однополюсный индикаторы напряжения.

Проверка сети двухполюсным индикатором

Такой указатель состоит из двух заизолированных проводов со щупами и корпуса со встроенным светодиодом или неоновым индикатором. Щупами проверяется состояние электрической сети: если есть обрыв, то индикатор не загорится. 

Схема протекания тока при проверке двухполюсным измерителем

Принцип действия, схема протекания электричества аналогична контрольной лампе за одним принципиальным исключением: внутри корпуса индикатора добавлено сопротивление. Резистор сводит к минимуму силу тока, которая протекает через двухполюсный указатель.

Однополюсный указатель или индикаторная отвертка работает по другому принципу.

Внешний вид индикаторной отвертки

Электрическая схема индикаторной отвертки

В ней за счет встроенного токоограничивающего резистора на выходе создается минимальная сила тока. Она безопасна для человека. Путь протекания электричества выглядит так:

Схема протекания тока при проверке индикаторной отверткой

Цепь электрического тока при проверке индикаторной отверткой: источник тока – провод –отвертка — тело человека – земля. Наличие или отсутствие свечения индикатора подскажет об имеющемся обрыве.

Основные виды проверки

В зависимости от типа и функциональности индикаторной отвертки, проводят контактную и бесконтактную проверку техники, оборудования, электрической сети.

Контактный способ

  • При проверке патрона необходимо проявить аккуратность, чтобы не закоротить контакты цоколя, которые расположены очень близко друг от друга. Фаза приходит на внутренний контакт, а не на резьбу, в противном случае, может происходить утечка на корпус осветительного прибора.
  • Если лампочки в люстре загораются неправильно или не все, то следует проверить подсоединение выключателя. Если на нулевой клемме загорается индикатор, это значит, что фаза попадает на нуль выключателя, проходя через лампочку люстры. В этом случае необходимо исправить ошибку монтажа.
  • Проверка на утечку напряжения проводится, когда покалывает, щиплет руку от прикосновения к технике. Электрический прибор подключают к сети, запускают его работу и прикладывают к корпусу тестер. Утечка на корпус происходит, если индикатор загорается в пол канала. Индикатор будет загораться в полную силу, если есть прямой контакт фазного провода с корпусом устройства. В этих случаях технику следует отремонтировать или заменить.

Поиск обрыва

Бывает, что при подключении прибора через удлинитель, он не работает, чтобы исключить поломку механизма, нужно проверить его на возможный обрыв.

Индикаторная отвертка берется за жало, торец рукоятки (пяточку) прикладывают к изоляции удлинителя, включенного в исправную розетку. Диод загорается, пробник ведут по всей длине провода. В том месте, где лампочка тухнет, возник перелом кабеля.

Когда с первой проверки не найден обрыв, необходимо выдернуть из розетки вилку удлинителя, перевернуть, затем воткнуть снова, повторить тестирование. Если действия не выявили неисправность удлинителя — проблема в приборе.

Скрытая электропроводка

Концы, замурованного в стену провода, прикладывают к «пяточке» и щупу отвертки. Если индикатор подает сигнал, обрыва в проводке нет, если провод поврежден, диод не загорится. Провод можно нарастить, если невозможно дотянуться пробником от одного конца до другого. Перед наращиванием дополнительную проводку проверить по аналогии.

Подключение светодиода к сети 220в, схема

Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.

Схема драйвера для светодиодов бывает двух видов:

  1. простая на гасящем конденсаторе;
  2. полноценная с использованием микросхем стабилизатора;

Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется. Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают. Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.

Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а  в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была  не с питанием.

Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера. Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока. Единственное нельзя превышать указанную  мощность.

Последовательное подключение

Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт.  В длинной цепочке из 60-70 LED на каждом  падает 3В, что и позволяет подсоединять напрямую  к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.

Такое соединение применяют в любой светотехнике:

  1. светодиодные лампах для дома;
  2. led светильники;
  3. новогодние гирлянды на 220В;
  4. светодиодные ленты на 220.

В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий