Что такое ЭДС индукции и когда возникает?

Джеймс Клерк Максвелл математически описал основные законы электричества и магнетизма

Джеймс Клерк Максвелл

Математическая формулировка электромагнитной индукции была разработана немецким физиком и математиком Францем Эрнстом Нейманом (1798-1895) в 1945 году. Эти открытия проложили путь к фундаментальной теоретической композиции, выполненной Джеймсом Клерком Максвеллом (1831-1879), начиная с “силовых линий Фарадея”. Однако работа Максвелла изначально вызывала недоверие у большинства физиков и игнорировалась инженерами.

Только к концу XIX века, после памятного эксперимента с электромагнитными волнами, проведенного Генрихом Герцем в 1887 году, теория Максвелла стала общепринятой и позволила обратиться как к физике, так и к технике.

Закон Фарадея

Явление электромагнитной индукции определяется возникновением электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура.

Основной закон Фарадея заключается в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.

Формула закона электромагнитной индукции Фарадея выглядит следующим образом:

Рис. 2. Формула закона электромагнитной индукции

И если сама формула, исходя из вышесказанных объяснений не порождает вопросов, то знак «-» может вызвать сомнения. Оказывается существует правило Ленца – русского ученого, который проводил свои исследования, основываясь на постулатах Фарадея. По Ленцу знак «-» указывает на направление возникающей ЭДС, т.е. индукционный ток направлен так, что магнитный поток, который он создает, через площадь, ограниченную контуром, стремится препятствовать тому изменению потока, которое вызывает данный ток.

Основные понятия и законы электростатики

Закон Кулона:сила взаимодействия двух точечных неподвижных зарядов в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними:

Коэффициент пропорциональности в этом законе

В СИ коэффициент k записывается в виде

Потенциалом электрического поля называют отношение потенциальной энергии заряда в поле к этому заряду:

 Проекция напряжённости электрического поля на какую-нибудь ось и потенциал связаны соотношением

Электроёмкостью тела называют величину отношения

Основные понятия и законы постоянного тока

Электрический ток — направленное движение электрических зарядов. В разных веществах носителями заряда выступают элементарные частицы разного знака. За положительное направление тока принято направление движения положительных зарядов. Количественно электрический ток характеризуют его силой. Это заряд, прошедший за единицу времени через поперечное сечение проводника:

Закон Ома для участка цепи имеет вид:

 При параллельном соединении величина, обратная сопротивлению, равна сумме обратных сопротивлений:

где t — время, I — сила тока, U — разность потенциалов, q — прошедший заряд.Закон Джоуля-Ленца:

Основные понятия и законы магнитостатики

 Характеристикой магнитного поля является магнитная индукция ➛B. Поскольку это вектор, то следует определить и направление этого вектора, и его модуль. Направление вектора магнитной индукции связано с ориентирующим действием магнитного поля на магнитную стрелку. За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле. Направление вектора магнитной индукции прямолинейного проводника с токам можно определить с помощью правила буравчика:если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения рукоятки буравчика совпадает с направлением вектора магнитной индукции. Модулем вектора магнитной индукции назовём отношение максимальной силы, действующей со стороны магнитного поля на участок проводника с током , к произведению силы тока на длину этого участка:

Основные понятия и законы электромагнитной индукции

 Если замкнутый проводящий контур пронизывается меняющимся магнитным потоком, то в этом контуре возникает ЭДС и электрический ток. Эту ЭДС называют ЭДС электромагнитной индукции, а ток — индукционным. Явление их возникновения называют электромагнитной индукцией. ЭДС индукции можно подсчитать по основному закону электромагнитной индукции или по закону Фарадея:

Электромагнитные колебания и волны

Колебательным контуром называется электрическая цепь, состоящая из последовательно соединённых конденсатора с ёмкостью C и катушки с индуктивностью L (см. рис. 7).

 Для свободных незатухающих колебаний в контуре циклическая частота определяется формулой

 Период свободных колебаний в контуре определяется формулой Томсона:

 Ток, текущий через катушку индуктивности, по фазе отстаёт от напряжения на π/2 или на четверть периода. Напряжение опережает ток на такой же фазовый угол.

Трансформатором называется устройство, предназначенное для преобразования переменных токов. Трансформатор состоит из замкнутого стального сердечника, на который надеты две катушки. Катушка, которая подключается к источнику переменного напряжения, называется первичной обмоткой, а катушка, которая подключается к потребителю, называется вторичной обмоткой. Отношение напряжения на первичной обмотке и вторичной обмотке трансформатора равно отношению числа витков в этих обмотках:

Примеры применения индукции ЭДС в технике

Генераторы и электромоторы. Индукция ЭДС является основой работы электромоторов и генераторов. В электромоторах работают постоянный магнит и перемещающаяся поэтому индуцированная ЭДС, которая создает силу мотора. В генераторах мощность двигателя используется для вращения проводника в токопроводящей катушке, создавая ток и ЭДС.

Встроенные системы зарядки автомобилей. Индукция ЭДС используется в системах зарядки автомобилей. Генератор, установленный в двигателе автомобиля, работает на основе индукции ЭДС, передавая ток в аккумуляторную батарею автомобиля.

Медицинская техника. Медицинская техника использует индукцию ЭДС для многих приложений. Например, электрокардиограмма, которая используется для диагностики сердечных заболеваний, основана на индукции ЭДС генератором электричества на коже пациента.

Беспроводные зарядки для смартфонов и другой электроники. Индуктивная зарядка — это технология безопасной и быстрой зарядки мобильных устройств. Эта технология основывается на создании магнитного поля между базой беспроводной зарядки и устройством, которое загружается, что приводит к индукции ЭДС в батарее устройства.

Магнитные датчики. Магнитные датчики используют индукцию ЭДС для определения положения оборудования и устройств. Например, магнитные датчики используются в автомобилях для определения скорости, оборотов двигателя и других параметров.

Индукционное плавление. Индукционное плавление используется для нагрева металлических предметов. Возникающая при этом электродинамическая сила создает индуктивную потерю в металлическом предмете, что приводит к его нагреву.

Электродвижущая сила — Класс!ная физика

«Физика — 10 класс»

Любой источник тока характеризуется электродвижущей силой, или сокращённо ЭДС. Так, на круглой батарейке для карманного фонарика написано: 1,5 В. Что это значит?

Если соединить проводником два разноимённо заряженных шарика, то заряды быстро нейтрализуют друг друга, потенциалы шариков станут одинаковыми, и электрическое поле исчезнет (рис. 15.9, а).

Сторонние силы.

Для того чтобы ток был постоянным, надо поддерживать постоянное напряжение между шариками.

Для этого необходимо устройство (источник тока), которое перемещало бы заряды от одного шарика к другому в направлении, противоположном направлению сил, действующих на эти заряды со стороны электрического поля шариков.

В таком устройстве на заряды, кроме электрических сил, должны действовать силы неэлектростатического происхождения (рис. 15.9, б). Одно лишь электрическое поле заряженных частиц (кулоновское поле) не способно поддерживать постоянный ток в цепи.

Любые силы, действующие на электрически заряженные частицы, за исключением сил электростатического происхождения (т. е. кулоновских), называют сторонними силами.

Вывод о необходимости сторонних сил для поддержания постоянного тока в цепи станет ещё очевиднее, если обратиться к закону сохранения энергии.

Электростатическое поле потенциально. Работа этого поля при перемещении в нём заряженных частиц по замкнутой электрической цепи равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии — проводник нагревается.

Следовательно, в цепи должен быть какой-то источник энергии, поставляющий её в цепь. В нём, помимо кулоновских сил, обязательно должны действовать сторонние, непотенциальные силы.

Работа этих сил вдоль замкнутого контура должна быть отлична от нуля.

Именно в процессе совершения работы этими силами заряженные частицы приобретают внутри источника тока энергию и отдают её затем проводникам электрической цепи.

Сторонние силы приводят в движение заряженные частицы внутри всех источников тока: в генераторах на электростанциях, в гальванических элементах, аккумуляторах и т. д.

При замыкании цепи создаётся электрическое поле во всех проводниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны от положительно заряженного электрода к отрицательному), а во внешней цепи их приводит в движение электрическое поле (см. рис. 15.9, б).

Природа сторонних сил.

Природа сторонних сил может быть разнообразной. В генераторах электростанций сторонние силы — это силы, действующие со стороны магнитного поля на электроны в движущемся проводнике.

В гальваническом элементе, например в элементе Вольта, действуют химические силы.

Элемент Вольта состоит из цинкового и медного электродов, помещённых в раствор серной кислоты. Химические силы вызывают растворение цинка в кислоте.

В раствор переходят положительно заряженные ионы цинка, а сам цинковый электрод при этом заряжается отрицательно. (Медь очень мало растворяется в серной кислоте.

) Между цинковым и медным электродами появляется разность потенциалов, которая и обусловливает ток во внешней электрической цепи.

Электродвижущая сила

Действие сторонних сил характеризуется важной физической величиной, называемой электродвижущей силой (сокращённо ЭДС). Электродвижущая сила источника тока равна отношению работы сторонних сил при перемещении заряда по замкнутому контуру к абсолютной величине этого заряда:

Электродвижущая сила источника тока равна отношению работы сторонних сил при перемещении заряда по замкнутому контуру к абсолютной величине этого заряда:

Электродвижущую силу, как и напряжение, выражают в вольтах.

Разность потенциалов на клеммах батареи при разомкнутой цепи равна электродвижущей силе. ЭДС одного элемента батареи обычно 1—2 В.

Можно говорить также об электродвижущей силе и на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всём контуре, а только на данном участке.

Следующая страница «Закон Ома для полной цепи» Назад в раздел «Физика — 10 класс, учебник Мякишев, Буховцев, Сотский»

Законы постоянного тока — Физика, учебник для 10 класса — Класс!ная физика

Электрический ток. Сила тока — Закон Ома для участка цепи. Сопротивление — Электрические цепи. Последовательное и параллельное соединения проводников — Примеры решения задач по теме «Закон Ома.

Последовательное и параллельное соединения проводников» — Работа и мощность постоянного тока — Электродвижущая сила — Закон Ома для полной цепи — Примеры решения задач по теме «Работа и мощность постоянного тока.

Закон Ома для полной цепи»

ЭДС

ЭДС расшифровывается как электродвижущая сила или физическое значение, которое характеризует работу посторонних сил в блоках неизменного либо переменного токов.

При закрытом проводном контуре равняется действию работы данных сил при перемещении одиночного заряда с плюсовым значением, по всему контуру.

Обозначая напряжение поля посторонних сил с помощью электродвижущей силы, получается что эдс неизвестна в закрытом контуре L равняется.

Допустимые силы электростатического поля постоянно не смогут держать одно напряжение в цепи, потому что работая по закрытому пути, данные силы равны нулю. А когда ток проходит через проводники, то данную работу сопровождает выделение энергии и нагревание проводников.

Посторонние силы заставляют двигаться заряженные частицы в генераторе, гальванических элементах, аккумуляторах и всевозможных источниках. При чем возникновение посторонних сил различное.

К примеру: В генераторе используются от вихревого электрического поля, которые возникают от изменения магнитного поля; У гальванических элементов и аккумуляторов используются химические силы.

Эдс источника тока зависит от напряжения в местах зажимов если цепь разомкнута. По закону Ома сила тока цепи с заданным сопротивлением также находит эдс. Единица измерения Вольт.

Эдс индукции это своего рода явление которое обусловлено изменением магнитного поля в замкнутом пространстве. Находится по формуле:

в которой: Ф — магнитное поле в закрытом пространстве S, закрытую контуром. При этом знак минус служит для неизменности магнитного поля благодаря индукции электродвижущей силы.

Электродвижущая сила это описание закрытого контура, невозможно точно показать её точку пребывания. Но практически всегда эдс считают приблизительно сосредоточенной в некоторых устройствах либо элементов цепи. При этом её называют описанием данного устройства, определяя как потенциальную разность в его разомкнутых полюсах.

Такие устройства разделяют на несколько видов зависящих от типа преобразования:

— Химические — это аккумуляторы, ванны, гальванические батареи;
— Электромагнитные — это электродвижущая сила электромагнитной индукции, которая бывает в трансформаторах, динамо-машинах, электромоторах, дросселях; — Фотоэлектрические — это внешние или внутренние фотоэффекты;
— Электростатические — это возникающее напряжение в механическом трении электрофорных машин или как пример грозовые облака.
— Пьезоэлектрические — это сдавливание либо растяжение пьезэлектрических датчиков.
Так же существуют термоионные и термоэлектрические эдс.

Вращающаяся катушка и влияние магнитного поля

Поместим замкнутую прямоугольную рамку во вращающееся магнитное поле (Рисунок 1).

При вращении её магнитное поле пронизывается линиями эдс магнитной индукции, и благодаря наличию этих линий они взаимодействуют, создавая измененное общее электромагнитное поле. Направление определяется правилом правой руки и обозначено на схеме крестиком и точкой

При этом важно учитывать относительное движение проводников. Ток в том же направлении возникает под действием поля

Однако на проводник с током в магнитном поле действует электромагнитная сила, ориентированная по правилу левой руки. По отношению к оси рамки электромагнитная сила образует момент, под действием которого она вращается в направлении вращения поля. Вращение рамки по частоте всегда меньше частоты вращения поля. Оно  «скользит» относительно магнитного поля полюсов N и S. Вследствие скольжения рамка генерирует электромагнитную энергию своего поля, токи и электромагнитные силы. Скольжение дается в процентах и вычисляется по формуле указанной на схеме. Невозможно вращать рамку с частотой магнитного поля, потому что при одинаковой скорости по частоте ток не проходит через проводники рамки, не генерируется электромагнитное поле, и не происходит  возникновение электромагнитной силы.

Понятие ЭДС и единица измерения

Если имеется заряженный предмет и соединить его с электрически нейтральным (или противоположно заряженным предметом), некоторое время в цепи будет существовать ток. Как только все свободные электроны перейдут от одного тела к другому, и заряды уравняются, ток прекратится.

Опыт с двумя электроскопами

Это можно увидеть на примере школьного опыта с двумя электроскопами. Один из них заряжен (например, положительно), а другой заряда не имеет. Если их соединить металлическим стержнем, то заряды перейдут от одного прибора к другому. Количество зарядов уравновесится, потенциалы электроскопов станут равными, электрическое поле прекратит действие на электроны, и ток перестанет течь.

Чтобы ток продолжался, надо носители зарядов из второго электроскопа перенести обратно в первый. Для этого нужна сторонняя сила, действующая против направления электрического поля. Такая сила называется ЭДС. Расшифровка этого сокращения – электродвижущая сила.

Перенос зарядов посредством ЭДС

Можно провести аналогию с водой. Если есть два бассейна, один из которых находится выше другого, то вода может перетекать из верхнего водоема в нижний. Но как только запас воды закончится, переток прекратится. Чтобы он продолжался, надо воду из нижнего бассейна перекачивать обратно в верхний (например, с помощью насоса).

Необходимость наличия ЭДС на примере перетока воды

ЭДС обозначается греческой буквой ε (эпсилон), а иногда E. Измеряется ЭДС, как и напряжение, в вольтах (1 В). Понятие электродвижущей силы является не очень удачным – сила не измеряется в вольтах. Но этот термин укоренился и широко применяется.

В видео простыми словами объясняется чем отличаются ЭДС и напряжение

Практическое применение явления электромагнитной индукции

Радиовещание

Переменное магнитное поле, возбуждаемое изменяющимся током, создаёт в окружающем пространстве

электрическое поле, которое в свою очередь возбуждает магнитное поле, и т.д. Взаимно порождая друг

друга, эти поля образуют единое переменное электромагнитное поле – электромагнитную волну.

Возникнув в том месте, где есть провод с током, электромагнитное поле распространяется в пространстве

со скоростью света -300000 км/с.

Магнитотерапия

В спектре частот разные места занимают радиоволны, свет, рентгеновское излучение и другие

электромагнитные излучения. Их обычно характеризуют непрерывно связанными между собой

электрическими и магнитными полями.

Синхрофазотроны

В настоящее время под магнитным полем понимают особую форму материи состоящую из заряженных частиц.

В современной физике пучки заряженных частиц используют для проникновения в глубь атомов с целью их

изучения. Сила, с которой действует магнитное поле на движущуюся заряженную частицу, называется силой

Лоренца.

Расходомеры – счётчики

Метод основан на применении закона Фарадея для проводника в магнитном поле: в потоке электропроводящей

жидкости, движущейся в магнитном поле наводится ЭДС, пропорциональная скорости потока, преобразуемая

электронной частью в электрический аналоговый/цифровой сигнал.

Генератор постоянного тока

В режиме генератора якорь машины вращается под действием внешнего момента. Между полюсами статора

имеется постоянный магнитный поток, пронизывающий якорь. Проводники обмотки якоря движутся в магнитном

поле и, следовательно, в них индуктируется ЭДС, направление которой можно определить по правилу “правой

руки”. При этом на одной щетке возникает положительный потенциал относительно второй. Если к зажимам

генератора подключить нагрузку, то в ней пойдет ток.

Трансформаторы

Трансформаторы широко применяются при передаче электрической энергии на большие расстояния,

распределении ее между приемниками, а также в различных выпрямительных, усилительных,

сигнализационных и других устройствах.

Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформатор

представляет собой сердечник из тонких стальных изолированных одна от другой пластин, на котором помещаются

две, а иногда и больше обмоток (катушек) из изолированного провода. Обмотка, к которой присоединяется источник

электрической энергии переменного тока, называется первичной обмоткой, остальные обмотки – вторичными.

Если во вторичной обмотке трансформатора намотано в три раза больше витков, чем в первичной, то магнитное поле,

созданное в сердечнике первичной обмоткой, пересекая витки вторичной обмотки, создаст в ней в три раза больше

напряжение.

Применив трансформатор с обратным соотношением витков, можно так же легко и просто получить

пониженное напряжение

Предыдущая
РазноеСумеречные выключатели
Следующая
РазноеЧто такое ограничитель перенапряжения и как он работает?

Формула нахождения эдс

Первым делом разберемся с определением. Что означает эта аббревиатура?

ЭДС или электродвижущая сила – это параметр характеризующий работу любых сил не электрической природы, работающих в цепях где сила тока как постоянного, так и переменного одинакова по всей длине. В сцепленном токопроводящем контуре ЭДС приравнивается работе данных сил по перемещению единого плюсового (положительного) заряда вдоль всего контура.

Ниже на рисунке представлена эдс формула.

  • Аст – означает работу сторонних сил в джоулях.
  • q – это переносимый заряд в кулонах.
  • Сторонние силы – это силы которые выполняют разделение зарядов в источнике и в итоге образуют на его полюсах разность потенциалов.

Для этой силы единицей измерения является вольт. Обозначается в формулах она буквой E».

Только в момент отсутствия тока в батареи, электродвижущая си-а будет равна напряжению на полюсах.

ЭДС индукции:

ЭДС индукции в контуре, имеющем N витков:

При движении:

Электродвижущая сила индукции в контуре, крутящемся в магнитном поле со скоростью w

Простое объяснение электродвижущей силы

Предположим, что в нашей деревне имеется водонапорная башня. Она полностью наполнена водой. Будем думать, что это обычная батарейка. Башня — это батарейка!

Вся вода будет оказывать сильное давление на дно нашей башенки. Но сильным оно будет только тогда, когда это строение полностью наполнено H2O.

В итоге чем меньше воды, тем слабее будет давление и напор струи будет меньше. Открыв кран, заметим, что каждую минуту дальность струи будет сокращаться.

В результате этого:

  1. Напряжение – это сила с которой вода давит на дно. То есть давление.
  2. Нулевое напряжение — это дно башни.

С батареей все аналогично.

Первым делом подключаем источник с энергией в цепь. И соответственно замыкаем ее. Например, вставляем батарею в фонарик и включаем его. Изначально заметим, что устройство горит ярко. Через некоторое время его яркость заметно понизится. То есть электродвижущая сила уменьшилась (вытекла если сравнивать с водой в башне).

Если брать в пример водонапорную башню, то ЭДС это насос качающие воду в башню постоянно. И она там никогда не заканчивается.

Эдс гальванического элемента – формула

Электродвижущую силу батарейки можно вычислить двумя способами:

  • Выполнить расчет с применением уравнения Нернста. Нужно будет рассчитать электродные потенциалы каждого электрода, входящего в ГЭ. Затем вычислить ЭДС по формуле .
  • Посчитать ЭДС формуле Нернста для суммарной ток образующей реакции, протекающей при работе ГЭ.

Таким образом вооружившись данными формулами рассчитать электродвижущую силу батарейки будет проще.

Где используются разные виды ЭДС?

  1. Пьезоэлектрическая применяется при растяжении или сжатии материала. С помощью нее изготавливают кварцевые генераторы энергии и разные датчики.
  2. Химическая используется в гальванических элементах и аккумуляторах.
  3. Индукционная появляется в момент пересечения проводником магнитного поля.

    Ее свойства применяют в трансформаторах, электрических двигателях, генераторах.

  4. Термоэлектрическая образуется в момент нагрева контактов разнотипных металлов. Свое применение она нашла в холодильных установках и термопарах.
  5. Фото электрическая используется для продуцирования фотоэлементов.

Batareykaa.ru

ЭДС в быту и единицы измерения

Другие примеры встречаются в практической жизни любого рядового человека. Под эту категорию попадают такие привычные вещи, как малогабаритные батарейки, а также другие миниатюрные элементы питания. В этом случае рабочая ЭДС формируется за счет химических процессов, протекающих внутри источников постоянного напряжения.

Когда оно возникает на клеммах (полюсах) батареи вследствие внутренних изменений – элемент полностью готов к работе. Со временем величина ЭДС несколько снижается, а внутреннее сопротивление заметно возрастает.

В результате если вы измеряете напряжение на не подключенной ни к чему пальчиковой батарейке вы видите нормальные для неё 1.5В (или около того), но когда к батарейке подключается нагрузка, допустим, вы установили её в какой-то прибор — он не работает.

Почему? Потому что если предположить, что у вольтметра внутреннее сопротивление во много раз выше, чем внутреннее сопротивлении батарейки — то вы измеряли её ЭДС. Когда батарейка начала отдавать ток в нагрузке на её выводах стало не 1.5В, а, допустим, 1.2В — прибору недостаточно ни напряжения, ни тока для нормальной работы. Как раз вот эти 0.3В и упали на внутреннем сопротивлении гальванического элемента. Если батарейка совсем старая и её электроды разрушены, то на клеммах батареи может не быть вообще никакой электродвижущей силы или напряжения — т.е. ноль.

Этот пример наглядно демонстрирует в чем отличие ЭДС и напряжения. То же рассказывает автор в конце видеоролика, который вы видите ниже.

Подробнее о том, как возникает ЭДС гальванического элемента и в чем оно измеряется вы можете узнать в следующем ролике:

Совсем небольшая по величине электродвижущая сила наводится и в рамках антенны приемника, которая усиливается затем специальными каскадами, и мы получаем наш телевизионный, радио и даже Wi-Fi сигнал.

Движение ЭДС

Давайте рассмотрим конкретный пример. У нас есть стержень, который движется на скорости v вдоль пары проводящих рельсов, отдаленных на дистанцию ℓ в однородном магнитном поле. Относительно поля рельсы остаются неподвижными и объединены стабильным резистором. Детальнее рассмотрим площадь, заключенную перемещающимся стержнем, рельсами и резистором. Поле перпендикулярно этому участку, а площадь возрастет из-за движения стержня. В итоге, вырастет и магнитный поток, а значит индуцируется ЭДС.

(а) – Движение ЭДС = Bℓv и индуцируется между рельсами, когда стержень отходит вправо в условиях однородного магнитного поля. Само поле выступает перпендикулярным к перемещающемуся стержню и рельсам. (b) – Закон Ленца указывает направленность индуцированного поля, тока и полярности индуцированной ЭДС. С помощью правила правой руки можно определить текущее направление

Чтобы определить величину индуцированной ЭДС, необходимо задействовать закон индукции Фарадея:

Здесь N = 1, а поток Φ = BAcosθ. У нас есть θ = 0° и cosθ = 1, так как B перпендикулярно A. Теперь Δ = Δ(BA) = BΔA, потому что B равномерно. Отметьте, что создаваемая стержнем площадь: ΔA = ℓx. Введем полученные величины в ЭДС:

Закон Ленца используют, чтобы определить направленность индуцированного поля, тока и полярность индуцированной ЭДС. Поток увеличивается вместе с площадью, поэтому индуцированное поле должно вступить в противостояние с существующим.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий